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Relativistic spin-polarized scattering theory for space-filling 
potentials 

S C Lovattt, B L GyorfFyt and G Y Guof: 
t H H Wills Physics Laboratory, University of Bristol, vndall Avenue, Bristol, Avon, UK 
t SERC Dmsbury Labomory. Warrington, Cheshire. UK 

Received 9 July 1993 

Abstract. Relativistic potential scattering from non-spherically symmetric sciuterers is studied 
and expressions for both charge and magnetizalion density are derived. The validity of full- 
potential Korringe-Kohn-Rostoket (KKR) multiple-scattering theory for full potentials is 
asserled and a practical scheme for calculating he single-site 1-mauix for the space-filling 
WignerSeitz cell is then described. Results. including full-potential band-slructure calculations 
for silicon wih an L,, of two, three and four, are then presented. 

1. Introduction 

Generally, the application of multiple-scattering theory [ l ]  for describing electrons in 
condensed-matter systems involves representing each scattering site (i.e. atom or ion) as 
a potential well that is both isotropic and of finite range. This is called the muffin- 
tin approximation, after the sphere delimiting the potential well. More recent work has 
tended Io relax this restriction [2-71, and the problem of treating unrestricted space-filling 
potentials has been addressed repeatedly [8-12]. In this paper we develop an efficient 
computational technique for studying relativistic potential scattering from non-spherically 
symmetric scatterers. Although our discussion will at first be quite general, we shall have 
in mind applications in the calculation of the electronic smcture of solids, and in the latter 
part of the paper we illustrate our method using crystalline silicon and ferromagnetic iron 
as explicit examples. 

There are a number of physical effects where potential anisotropy can be expected to 
play a significant role. These include the magneto-crystalline anisotropy of transition metals 
such as iron and nickel, covalent bonding, surface effects in metals and the unexplained 
degrees of freedom observed in heavy-fermion systems. In such cases, it is important to 
treat spin polarization together with orbit-orbit and spin-orbit coupling on equal footings. 
Experience suggests that perturbation methods cannot be trusted in these circumstances [13], 
and hence the exact scattering-theory methods described below can be expected to have a 
wide field of useful applications. 

Following Strange er a1 [Z], the applicability of relativistic density functional theory 1141 
is assumed, and the influence of the effective magnetic field on the orbital motion of the 
electrons (diamagnetism) is ignored. The former assumption allows all many-body effects 
to be packaged as effective exchange-correlation potentials. The latter restricts the magnetic 
vector potential so that it gives rise to a ‘spin-only’ effective B-field. This procedure is 
known as the Gordon decomposition [15,16]. 
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In section 2, starting from first principles, we formulate the single-site scattering problem 
and solve it directly for a spherically confined but anisotropic (warped muffin-tin) potential. 
In section 3 we review how the t-matrix can be obtained, and continue by discussing angular- 
momentum truncation in section 4. We generalize our technique, as required for a space 
filling potential defined within a Wigner-Seitz cell, and discuss the angular-momentum 
convergence of our t-matrix calculation scheme in section 5. In section 6 we show how the 
charge and magnetization densities can be calculated in our approach. Finally, we present 
results for iron and silicon in section I and summarize our conclusions in section 8. 

The following notation has been adopted in what follows. D i m  four-component spinors 
are given a tilde, e.g. 4. Two-component spinors are given a bar, e.g. 4. Three-component 
real-space vectors are printed in bold italics, and unit vectors given a hat. e.g. W(P). 
Matrices are underlined whenever their indices are suppressed e.g. A, p. 

2. The single-site scattering problem 

Neglecting diamagnetism, the KohnSham-Dim equation of relativistic density functional 
theory reduces to [2] 

{ - - i f i c a . ~ + m ~ c ~ P + ~ ~ a [ ~ ;  (n,m)l+po.  ~ . c [ r ; ( n , m ) l - ~ j & r )  = o ( I )  

where a and p are the standard jour by four Dirac matrices [16], and &r) is a four- 
component Dirac spinor wavefunction. 

In the case of application to solids, U e ~  and  we^ are periodic crystal potentials, 
composed of individual potential wells, namely Uea = xi U ( r  - R )  and Wen = 
xi W(r - 4). 

As a preliminary to solving equation ( I ) ,  we shall study the Dirac equation 

{ c a .  p +m,cZP + ~ ( r )  + pa * W ( T )  - E ] $ ( r )  = o (2) 
for a U and W describing a single scattering centre. 

As is well known 1161. a * p = -i+ - a[h(a /ar )  f ( I / r ) ( h  -pn)], and equation (2) 
can be written in the following convenient form: 

(3) 
where R = p (a. L t 2). 

The principal virtue of this version of the Dirac equation is that it makes the introduction 
of the radial wavefunctions particularly straightforward. In short, we proceed by expanding 
&r) in spin-angular harmonics, by writing 

{mec2p + ~ ( r )  - i h c . a [ ( l / r ) ( h  - P K )  + h ( a / a r ) ] ) l J ( r )  = 840.) 

is a Pauli column spinor eigenfunction of the total angular-momentum operator, 
J 2  = IL + SIz, and also its z component, .Iz = LZ + SZ. 

If V ( r )  is isotropic, equation (3) only relates the large component, fK,*(r), to itself (via 
m,cZp + V ( r ) )  and to the small component gc,K(r)  (via the term in +.a), and so the Dirac 
equation can be separated into an infinite set of pairs of first-order differential equations. If 
V ( r )  is not isotropic, it introduces couplings between the angular-momentum channels as 
follows: 
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- 
where Rc,fi = [ "'~dr) 1 is a two component radial wavefunction, and 

gyr.p4r) 

] d%. 
+ ~-JXJ,dF)W(T) .u%K*.fim 0 

0 %L.J~)W(r)  * vx-e?,pm 
If U ( r )  and W(r)  are spherically symmetric and W(r)  is unidirectional, the V-matrix 
simplifies so that only those pairs of channels with identical /I and 1 values ( K  = - (K'+ 1) 
or K = K ' )  are coupled. However, if either U or W is anisotropic, V becomes more 
complicated. 

To be more specific about V, we expand U and W in spherical harmonics: 

and find that 

are Gaunt Numbers for half-integral angular momenta. 
The corresponding terms in the second sum of equation (6) are spin-orientation vectors, 

and are dotted into the W L M ,  as indicated. Their x and y components can be obtained in 
terms of Gaunt numbers after expressing a, and uy in terms of spin-raising and -lowering 
operators: 

(KI.ILIIY? U,IKLP~)= ~ ( K I , P I I Y ? I K Z , P ~ +  1) [j2(j2+ O - P ~ ( P ~ -  I)]"' 

t f ( K i . f i i I C ' I K Z I p 2 -  1) [ j 2 ( j z t  1 ) - ~ 1 z ( c ~ 2 t 1 ) ] ~ / ~  

( K I . I I ~ I Y ~ " U ~ I K Z , C L ~ ) =  ( ~ / ~ ) ( K I , ~ L , I L ~ I K ~ , ~ L ~ +  1) [ j z ( j z+  i ~ - f i ~ c ~ z - -  1)]'/2 

- (i/2) ( K I ,  PI IYFIK~, - 1) [ j2(j2 + 1 )  - ~ 2 ( ~ 2  + 1 )I"'. 
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We now seek &Q(T; E )  in the form 

where f K  and 8. are radial functions specified close to the origin in terms of the series 
solution of the hydrogenic Dmc Hamiltonian [19]. This is preferred to the value given 
in [18], as it avoids the requirement associated with that value and positive K for a radial 
grid extending in excessively close to the origin. 

In the opposite ( r  + 03) limit, &Q contains radial components in many other angular- 
momentum channels. In fact it can be written as 

Multiplying 6, on the right by b,!,,, and summing over A', we define a new function, 
%A 

= ~ b Q ( r ) b & .  
Q 

(9) 

It follows from (8) and (9) that, asymptotically, 2,, consists of a single incoming spherical 
wave and a sum of outgoing waves 

The [%A)  are the spherical-wave analogues of the familiar plane-wave scattering solutions, 
and form a complete set. Consequently, the angular-momentum representation of the 
s-matrix. which is defined by the asymptotic relation 

is given by 

s = ab-'. (10) 

Furthermore, the 'on-the-energy-shell' components of the %matrix we require [ZO] an 
defined by the relation 

(11) - - 2i9 tr,,,,.M*,P2 - SX,.P,.K,.P, - &,,*26il,.P,. 

We now tum to the calculation of the a and b matrices. Evidently, they are the expansion 
coefficients of the &Q in the K, p basis beyond the range of the potential, and are defined 
by equation (8). They can be written as integrals of the Wronskians of the value of 6 
and free-space solutions h: taken over any surface r enclosing the region where V ( T )  is 
non-zero, namely 
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where the relativistic Wronskians Wr[h:; 41 and WO are defined by the following relations 

S C Lovatt et a1 

Wr p:(r); 4(r)] = is [h;(r)]' a G(r) . dzr  
r 

In the warped muffin-tin case, the natural surface over which to conduct the Wronskian 
integral is the muffin-tin sphere itself. This has two distinct advantages. First, there is 
then no need to continue the radial integrals across the potential step that generally occurs 
at the muffin-tin radius; and second. the surface integrals become trivial because of the 
orthonormality of the spin-angular harmonics on such surfaces. 

where 

In the E + 0 limit, the eigenvector u,(O) has only one non-zero component, namely 

lim ~u;e~ , , , , (d  =an.". (15) 

Hence it  is possible to identify U with (K, p)  and to speak of (for example) an S-like phase 
shift, meaning minus half of that eigenphase of the s-matrix associated with the eigenvector 
of the s-matrix that evolved from the zero-kinetic-energy eigenvector that represented a 
pure S wave. 

Po 
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4. Angular-momentum truncation 

It is inevitable that above some angular-momentum L ,  the s-matrix reduces to the 
identity. It is less obvious that the coupled equations and the a and b matrices can be 
similarly tNnCated. We now tum to these related questions. 

As regards the coupled equations, there is a marked tendency for low angular-momentum 
radial components to induce very large responses in those high angular-momentum channels 
to which they are coupled. This 'enhanced up scattering' can be understood mathematically 
in terms of the power-law behaviour of spherical Bessel functions close to the origin, and 
also physically as representing the formation of those sharply defined incident wave-fronts 
that pierce the anisotropic potential on precisely those trajectories that avoid picking up 
much angular-momentum from the potential. 

The above observations might be taken to suggest that truncation of the t-matrix at L ,  
is misguided, as it involves ignoring high angular-momentum components of considerable 
magnitude. Fortunately, the secondary effect on the low-angular-momentum channels of 
the large amplitudes in the high angular-momentum channels is negligible, because down 
scattering is suppressed to a much greater degree than up scattering is enhanced. Hence, if 
it can be shown that only the radial functions in the low angular-momentum channels play 
a significant part in determining the s-matrix, then L,,, truncation has been justified. 

To be more specific, numerical experience (once more consistent with the power-law 
behaviour of the jl and i l l  functions close to the origin), implies that a and b have the 
following approximate structures 

and hence 

Consequently. 

AB-' 0 
s=[ 0 I ]  

Evidently, if the a and b matrices had exactly the form shown, the low angular-momentum 
sector of s would be given exactly by A B-I. In reality, the upper right-hand sub matrices 
(shown above as identically zero) contain small non-zero entries, 0, and C l b .  and the J 
and K which are shown as common to the a and b matrices differ slightly between them. 
To first order in all deviations from the ideal forms of a and b, the low angular-momentum 
sector SL, of the s-matrix, is given by 

SL., = AB-' + [AB-'nb - CZ2,] K-IJB-l. 

J, - Jb and K, - & only enter into the expansion of SL, via second-order and higher 
terms. It is apparent that the enor introduced into SL,. by truncating the a and b matrices 
to A and B (and so discarding all terms after AB-') is small, being first order in the Q 
matrices. This establishes the legitimacy of L,, truncation both of the potential expansion 
in equation (5) and of the a and b matrices. 
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5. Space-filling potentials 

The question of the applicability of multiple-scattering theory to space-filling potentials is 
contested in the literature. In particular, whether 'near-field corrections' have to be made 
has been much discussed [21,22,81. 

We agree with Butler er ai [ I  I ]  that the formalism of multiple-scattering theory holds 
for space-filling potentials as long as the s-matrices involved are evaluated on the surface of 
the Wigner-Seitz cells. Moreover, we accept Nesbet's argument [9] that for the full-potential 
problem, the local cell potential can be arbitrarily continued into the moon regions [SI 
between the surface of the WignerSeitz cell, rws, and its circumsphere in order to simplify 
the calculation of its S-matrix, and that the basis functions so generated are independent of 
the potential in the moon regions. 

Once the t-matrix tK.A(s) has been calculated, we proceed to finding the energy bands 
by looking for the zeroes of the generalized KKR determinant. Namely, for each wave vector 
k,  we find the energies Y . ~ ,  such that 

S C Lovan et a1 

Ilt-'(&) - iq - B(k; = 0 

where Bh.,^(k; E) are the relativistic stmctuTe constants /23,20,2]. 

Figure 1. 
CircumSQhere. 

Analyticaly mntinued silicon potential extending throughout the WignerSeitz 

The two obvious candidates for 'moon-region' potential are (i) that which continues 
the interior scattering potential smoothly, so that the simplest possible representation of the 
Hamiltonian within the WignerSeitz circumsphere can be used [12], see figure I or (ii) 
zero 1241, so that S can be evaluated on the Wigner-Seitz circumsphere, see figure 2. We 
next argue that there is no advantage to be gained from requiring the potential within the 
Wigner-Seitz circumsphere to be smooth. By contrast. the practical advantage of evaluating 
S on the WignerSeitz circumsphere, which can only be done if the potential in the moon 
regions is set to zero, is obvious. 

Because the choice of WignerSeitz cell potential we favour is discontinuous on Tws, 
it cannot be accurately represented without the use of high-order spherical harmonics. 
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Figure 2. AbfilpUy mncated silicon potential, limited to within Ihe Wignerdeiu cell. 

Fortunately, such high-order harmonics do not enter into the tNnCated set of radial equations. 
The couplings they give rise to all involve high angular-momentum channels (because of the 
triangle rule). So far as it is legitimate to neglect such high angular-momentum channels, 
to that same extent the high-order components of the potential can be neglected Moreover, 
the L,,, defining the set of radial equations fixes the point at which the potential expansion 
can be truncated, namely ;.La. It follows that a space-filling potential can be adequately 
expressed throughout each WignerSeifz cell in terms of a very limited number of spherical 
harmonics. In all our calculations, we have found s (and so t )  by integrating (4). and 
evaluating the a and b matrices using (14), at the radius of the WignerSeitz circumsphere. 

6. Charge and magnetization densities 

While the 'on-the-energy-shell' t-matrix for every unit cell is sufficient to determine the 
energy eigenvalues of an infinite solid, in a self-consistent calculation the charge and 
magnetization densities are required as well. In this section we discuss the formulae for 
these quantities appropriate to the anisotropic scatterers considered here. Recall that the 
charge and magnetization densities may be calculated using the following formal relations: 

Resolving the identity to the right of the delta function in the first of equation (16) using 
the spherical scattering solutions [25] gives: 

(17) 
We now recast the above relation into a form more suitable for numerical cal- 
culations. Changing the variable of integration, and using the relativistic relation 
E ( p )  = c ( p 2  + mZc2)' /2, we find that 
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and similarly 
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These relations take a more familiar form when expressed in terms of the 2 functions [26,201 

Substituting equation (21) into equation (18), we find that 

where we have used the identities 

(t’t) = (i/Zq)(t - t+) 

Tr((t - t t ) i t i ? ) = T r @ t i t }  - [ T r I i t i t t ] * = 2 1 m T r ( Z t i t l .  

Note that when atomic units are used, lim, (2E/h2c2) = I. 
These results can be generalized to the multiple-scattering case either by constructing 

the system’s Green function from the scattering solutions or more directly from the secular 
equation of multiple-scattering theory [10,27]. The required generalizations of the standard 
formulae [20] are 

2 1  
m i (T; E )  = -@E o h r s  ;h CfA’(T; E ) @ U i i t ( T ;  & ) T ~ ? , I \ ( & )  

A’.A 

where 

i j  - I  = - [iq ~ A # , A  - ti!,̂  + BY,,,(k,&)] exp[-ik. (Ri - R j ) ]  d3k (22) 

the superscripts label Wigner-Seitz cells, and the B!/,.,(k,&) are the usual relativistic 
structure constants for the lattice. Because the basis functions within the Wigner-Seitz 
cell are independent of the potential in the moon regions, the basis functions used in the 
above formulae can be identical to those used to calculate the t-matrix. 

BZ 
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7. Results of implementing the full potential KKR theory 

In order to illustrate the power of the above theory, we shall now report on a number of 
calculations for iron and silicon. In the first case we shall focus on the interaction between 
the local magnetic moment and the cubic crystal field. In the second case, we shall aim 
to demonstrate that our Full-potential KKR theory can describe the highly directional sp' 
bonds in silicon with a relatively low value for L-. 

Unless stated otherwise, the results quoted below were obtained with L,, = 2. 
Relativistic units are used throughout, with the physical value of the speed of light c 
being unify. The aspherical electric scalar potential was in each case determined by a 
self-consistent linearized augmented plane wave (LAPW) calculation, using a code [28] 
genedized to cope with systems lacking inversion symmetry. As is well known, for 
iron the eLectric potential has (cubic) components in Y: and Y;"': and Y: and Y,""' while 
for silicon, there is an additional (tetrahedral) component in Y?" [29]. The spin-dependent 
potential used to obtain the results quoted for iron was taken from the literature [30]. We 
begin by displaying the effects of non-sphericity in the case of a single scatterer. 

Figure 3. l ag  of charge density on the Ill01 plane 
for the warped muffin-tin imn potential, with its 1 = 4 
component boosted tenfold. ?he core region has been 
removed. 

Figure 4. sinh-' M[m,l on the [I101 plane for 
the warped muffin-tin iron potential, with its 1 = 
4 componenl bwsted tenfold, and lhe magnetization 
dong (001). 

7.1, D-wave phase shifts for iron 

A charge density plot for a warped muffin-tin iron potential, with the local magnetization 
aligned perpendicular to one face of the Wigner-Seitz cell, the (100) axis, is given in 
figure 3. The I = 4 component of the electric scalar potential is non-physical in that 
it has been boosted tenfold to illustrate the effect of asphericity. The peripheral charge 
distribution, though non-spherical, is smooth and has no lobes, indicating the absence of 
covalent bonding. It is slightly stretched out along the plot's y axis because the neighbouring 
atoms on this plane are fulther away from the central atom in this direction than the other. 
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The influence of the anisotropic scalar potential can be seen in figure 4, where the component 
of the magnetization density perpendicular to the imposed W direction is shown. The 
inverse hyperbolic sine of the magnetization is plotted to compress the large range of the 
plot. A substantial orthogonal magnetization can be seen in the core region. 

S C Lovatt er al 

2.5 3'0 m 

0.6 0.8 I .o 
-. . . W&S)  

Figure 5. D-wave w.w- lor tk warped muffin-tin iron potential. 
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Figure 6. D-wave ~esomcss versus 112, for the wrped mumn.tin iron potential. c = 1 
corresponds U) physical d i l y .  

The D-like phase shifts (see discussion at equation (15)) for the above potential are 
given in figure 5. To illustrate the effects of relativity. the 0-like resonance energies for 
the same potential are plotted against I/$ in figure 6. It is not easy to make sense of 
these data. as the effects of the anisotropic scalar potential and the spin-polarization W .  S, 
and relativistic L . S interactions are of similar magnitude. To clarify the situation, it is 
helpful to consider in turn first the three extreme cases where only one of these interactions 
is significant and then how these merge into each other. This can best be done by focusing 
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Figure 8. Iron D-wave resonances, non-magnetic case. c = 1 corresponds to physical reality. 

on the segregation pattern of the D-like resonanceS as a function of the three interaction 
strengths. 

Figure 7 relates to the non-relativistic case. On the left, the spin-polarization potential 
has its nominal value, and the anisotropic part of the electric scalar potential varies from 
zero to ten times nominal. On the right, the scalar potential is maintained at ten times its 
nominal value and the magnetization is reduced from its me value down to zero. The change 
over from the spin-up/spin-down pentuplets to the doubly degenerate cubic triplet r; and 
doublet r,2 is clear. In the non-rclativistic regime these two interactions are additive, spin 
being independent of orbital motion. 

Figure 8 relates to the non-magnetic case. On the left, relativistic effects are maximized, 
with the speed of light set at 0.5, and the anisotropic electric potential varies from zero to 
ten times nominal. On the right the cubic anisotropy of the electric potential is maintained at 
its maximum value, and the speed of light is increased from 0.5 up to w. The change over 
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from the relativistic pattem of a J = 4 quartet and J = hextuplet to the non-relativistic 
cubic degeneracies is clear. It is interesting to note that while the four resonances which on 
the right belong to the r12 imp  remain degenerate throughout the six r;, resonances split, 
one pair moving over to join with what was the r,2 group, and so constituting the J = 
hextuplet on the left of the figure. 

S C Lovatt et a1 

Bz = 1, l/cZ = L . 4  

1/02 = 4, Ba = 1..B 

Figure 9. Iron D-wave resonanw. isotropic electric potential case. e = I corresponds ta 
physical reality. 

Figure. 9 relates to the isotropic scalar potential case [Z]. On the left, the magnetization 
has its nominal value, and the speed of light varies from infinity down to half its true value. 
On the right, the speed of light is maintained at 0.5, and the magnetization is reduced from 
its nominal value down to zero. The change over from spin-up/spindown splitting to the 
relativistic pattern of degeneracies is clear. The conflict between the propensity of the spin 
of each electron IO align on the one hand with the imposed magnetization, and on the other 
with its own orbital motion is apparent. 

7.2. Single-site magneto-crystalline anisotropy for iron 

To gain further insight into the coupling of the local magnetic moment to the crystal field, 
we have studied the magneto-clystalline anisotropy of a single iron potential well. We 
found the Fermi level and electronic intemal energy UE of the single-site system with the 
magnetization oriented in the [Ool], Ill01 and [ l l l ]  directions by using the Friedel sum, as 
derived in appendix B, for the spin-dependent density of states. In the non-relativistic limit, a 
magnetic field only interacts with the electron spins, which are themselves entirely decoupled 
from the crystal field. The magnetocrystalline anisotropy is in this limit identically zero, 
and the effect revealed as essentially relativistic. 

In figure 10 uE[oo1] - u E [  11 11 and uE[m1] - uE[I lo] are plotted against I/cz, for 
a warped muffin-tin iron potential. uE[ool] - UE[ll I] starts slightly positive, becomes 
negative (falling to a minimum for c = 0.45) and then rises steeply for lower values. Taking 
these calculations at face value, at intermediate values of c, the [OOl] magnetization results 
in the lowest internal energy, and the [ 1 I11 the highest; so the easy axis might be expected to 
lie along [IOO]. On the other hand, in both the extreme relativistic and non-relativistic limits, 
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Figure 10. Single-site component of the magneto-crystalline anisotropy for the warped muffin- 
tin iron potential. c = 1 wrresponds lo physical reality. 

the 111 I ]  orientation is the least energetic and the [lo01 orientation the most energetic, and 
the easy axis should then lie along [ 1 11 I. However, for c = 1, the single-site contribution to 
the anisotropy energy is truly negligible [31]. Evidently, such calculations would be more 
interesting if carried out for bulk materials. Moreover, realistic quantitative calculations 
certainly require the development of a fully self-consistent procedure. 

7.3. Magnetic anisotropies in the band structure of iron 

The L,, = 2 spin-polarized band structure for the warped muffin-tin iron potential in the 
region of EF and along the lines K (ID , 1/2 , 0) -r and r- L (In , 1/2 , 1/2) is given in 
figure 11.  Bands are given for the magnetization directed both along the [OOI] and [ I  111 
directions. In this region of the Brillouin zone the D-wave bands are very complicated, 
being first split by the large exchange splitting W .  S term and then distorted by the mutual 
repulsion of those bands belonging to the same irreps of the space group that are brought 
into proximity by the W . S shifts. The set of bands featured in figure 11 have almost 
pure spin character, but some J-character is retained, and this is the cause of the splittings 
evident where they cross the r point. The impact of the cubic space group is clearly seen in 
the approximate tripletldoublet segregation of these five bands, the lifting of this degeneracy 
at the milliRydberg level is due to angular-momentum orientation. Because it changes the 
space group, rotating the magnetization alters which bands can cross each other (see for 
example the behaviour at 0.662 Ryd and 0.626 Ryd, half-way between K and r) as well as 
more generally changing the magnitude of the band repulsions. 

A comparison of the upper (triplet) set of bands at the r point for the isotropic muffin- 
tin and warped muffin-tin cases is given in figure 12. While the anisotropy of the cell 
potential is seen to shift the bands bodily by about 2 mRyd, it does not significantly change 
the diference in band energies for the two orientations of magnetization. This is not 
surprising, because as has already been remarked, the latter effect is largely attributable to 
W J .  It might appear, therefore, that the use of a warped muffin-tin cell potential in a 
calculation of the magneto-crystalline anisotropy of iron would give essentially the same 
result as would be obtained with an isotropic muffin-tin cell potential. However, because 
the true magneto crystalline anisotropy is in the region of only 20 KRyd, it is still not clear 
that the cell potential anisotropy has a negligible role in determining its exact value [31]. 
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Figure 11. L,, = 2 D-wave bands for the warped muffin-tin iron potential. The full curves 
are for h e  magnetization along [ I l l ]  and the broken curves for the magnetization along [OOll. 
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Figure 12. Lmax = 2 D-wave bands for the warped muffin-lin iron potential in the region of 
the r paint (curves), compared to the isotropic case (points). 

7.4. The band structure of siricon 

Silicon has one of the most open lanices encountered in solid-state theory. The radius of 
its Wigner-Seitz circumsphere is in fact equal to its nearest-neighbour separation. It has 
long been thought impractical to apply multiplescattering techniques in such circumstances 
without the use of auxiliary empty spheres [32]. Our results show this judgement to have 
been unduly pessimistic. 

In principle. our calculations should agree with the results obtained with the self- 
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consistent LAPW code, because the potential used is identical. Exad agreement was not 
expected because the LAPW uses a linear approximation technique and becomes less accurate 
at higher energies. 

3.0 I I 

0.0 0.2 0.4 0.6 0.8 1.0 12 1.4 1.6 1.8 2 0  
Energy (Rydber 

Figure 13. Phase shifts for the warped muffin-tin silicon potential, (with its I = 4 pM boosted 
tenfold). Resulls for the isotropic case are given as brokm curves, for comparison. 

The unit cell of the silicon lattice contains two atoms. The S-matrix of the second can 
be obtained from that of the first by either reflecting it in the xy plane or rotating it about 
the z axis by one quarter revolution. The S-, P- and D-like phase shifts for a warped 
muffin-tin silicon potential are given in figure 13. To illustrate the effect of asphericity, the 
I = 4 component of the anisotropy has been increased tenfold. The j = $ and j = 1/2 
P-wave splitting can hardly be seen, because relativistic effects are so small. The phase 
shifts are seen to deviate significantly from those of the isotropic case only where two waves 
belonging to the same irreducible representation of the symmetry group characteristic of the 
scattering potential have similar phase shifts; and in particular when these would be identical 
in the absence of the anisotropy. In the energy range of interest, this condition is only met 
for the P and D-waves, and then only substantially above EF. Even so, for energies in the 
region of EF (and hence the band gap), the P -  and D-like partial waves are of somewhat 
mixed character. This shows up clearly in the charge density, figure 14, calculated using 
(19) and (20). The regions of increased electron density are remnants of the covalent bond 
charge that build up between nearest neighbours in crystalline silicon. 

The s-matrix of a space-filling potential (figures 15 and 16) was evaluated on the 
Wigner-Seitz circumsphere as described in section 5. above. The generalized phase shifts 
for L,, = 2 are given as figure 17. The phase shifts for the isotropic muffin-tin potential 
are plotted as broken curves on the same graph for comparison. Although no anisotropic 
components have been boosted, the D-like phase shifts show significant cubic splitting. 
This is due to the potential in the interstitial regions within silicon’s open lattice, which 
plays a critical role in defining the element’s band structure. The second (and dominant) 
effect, however, is the peaking of the P-wave resonance and the reduction of its energy 
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Firmre 14. Lop of charge density on the I1101 plane Figure 15. The space-filling silicon polential on ~. 
f& the w w a  muffin& aiSmi ptential. with its 
1 = 4 pad boosled tenfold. The core region has been 

& (IlO] plane. construCled within each Wigner-%it2 
cell from an isotropic component togelher wilh others 
proportional to yTS1, r:. r y ,  Y: and Y?. The 
core region has been removed. 
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by about 0.2 Ryd. These effects are largely attributable to the additional isotropic potential 
component now present between the muffin-tin and WignerSeitz circumsphere. The S- 
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Figure 17. Phase s h i h  for lhe space-filling silicon potential. with L,, = 2. Results for lhe 
isotropic muffin-tin potential are shown as broken curves, for comparison. 

X r L K r 
Figure U. P-, D- and F-wave components of the P- and D-like eigenvectors of lhe S-maviX 
for the space-filling silicon potential. with Lma. = 3. 

and P-like phase shifts are not affected to first order by any tetrahedral or cubic aspherical 
components, and for L,, = 2, the S-like phase-shift is unperturbed to all orders. 

However, a first-order mixing of P and D waves does occur for L,, = 3 via the I = 3 
tetrahedral potential component, see figure 18. This plays a significant role in defining the 
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Figurr 20. Phase shifts for the spacefilling silicon potential, with L,, = 3. Resulls for the 
isotropic potential component alone are shown as broken cwes. for comparison. 
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Figure 21. KKR (L" = 3) results (pints) versus LAPW results (CWK) for the space-filling 
silicon potential. 

Increasing L,, to three changed the phase shifts only slightly (figure 20). and improved 
the band structure results at higher energies (figure 21) but introduced no new features. It 
is inevitable that Lmr = 3 will give anomalous results for the S-wave antibonding band 
(again marked X). The wave function of any covalent antibonding band has a low amplitude 
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Figure 29. KKR (LmW = 4) results @Dints) versus UPW resulls (uuves) for the space-filling 
silicon potential. 

in the bond-charge regions, where the V, and V4 add, but a high amplitude in the interstitial 
regions, where the V3 and V, tend to cancel. Now, V, only affects S-wave bands to first- 
order when L,, = 4, at which point it couples in G waves. Hence, limiting L,, to 
three means that of all the anisotropic potential components, only V, has a first-order effect 
on the energy of this band at the r point. The resulting neglect of V, shifts the S-wave 
antibonding band up in energy, because its wave function will be affected by the positive 
lobes of the V, (which lie in the interstitial regions) much more than by their negative 
counterparts (which lie in the regions of bond charge). Increasing L,, to four (figure 22) 
allows V, to have a first-order effect on the S-wave antibonding band‘s energy, and brings 
it back to its position in the L,, = 2 case where all anisotropic potentials are ignored as 
far as this band is concemed. 

8. Conclusions 

We have developed an efficient method for calculating the fully relativistic spin-polarized 
scattering amplitudes for a non-spherically symmetric potential to be used in KKR band- 
theory calculations. We have discussed L,, buncation of the Hamiltonian, and justified 
our use of this approximate procedure. Moreover, we have argued for the validity of 
full-potential KKR theory, and that the t-matrix should be evaluated on the WignerSeitz 
circumsphere for an approximate cell potential. We have illustrated our method with 
relativistic calculations for iron, and with calculations for silicon that avoid using non- 
atomic ‘empty spheres’ and require an L,, of at most four. The excellent agreement 
between our LAPW and KKR L,, = 4 results even at higher energies tends to legitimize 
both calculation schemes. 

It is most satisfactory that a substantially complete description of the dynamics of 
electrons in such an open structure can now be given in terms of one atomic s-matrix 
per site, and especially one with such a low angular-momentum cut-off. The absence of 
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near-field corrections in this most difficult of cases constitutes a strong practical argument 
against their existence in any circumstances whatever. 

At all stages in our analysis, we have maintained the separation between the dynamics of 
the atomic scattering problem and the geometric effects of the crystal lattice. We believe that 
this approach facilitates physical insight into the electronic propelties of whatever system 
the method is applied to. In particular, we expect the illuminating role still played by the 
single-site generalized phase shifts (now augmented by their corresponding eigenvectors) 
will prove fruitful in future work. 
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Appendix A. The Wronskian divergence theorem 

Consider the divergence of the local contribution to the matrix element of a, the relativistic 
flux-operator: 

V .  (@a+) =$a. [V4] + [@a. VJ]* = (i/hc)(@H& - [4tH~r$]*) 

for every point in space, where HD is the Dirac Hamiltonian for some real potential. 

but with energy E*, then the following identity holds: 

(Al) 

If 4 is an RHS eigenfunction of H, with energy E,  and c,& an RHS eigenfunction of Ho, 

[4tH,$]* = [HD~] '  4 = [E*$] '  4 = E$$ = $H&. 

Thus: 

v . (Va4) = 0 (AV 

which constitutes the local version of the Wronskian divergence theorem. In conjunction 
with Green's theorem this implies that any closed surface integral of &a4 is zero if these 
functions are solutions of the wave equation with the same potential, and are regular within 
the surface of integration. Moreover it implies that an integral over a general surface r' can 
be distorted into an inti:@ over a sphere, S, of radius p. 

This means that a Wronskian taken between any two of the regular basis functions will be 
zero, for all values of p ,  because of the boundary conditions satisfied by the values of 6, 
at the origin, which trivially ensure that 

limWS[&p,; +e2] = 0. 
/WO 
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Beyond rws. the &e become sums of free-space solutions. and W [ & Q ~ ;  &e2] can be written 
in terms of the a and b matrices and WO: 

S C Lovatt et a1 

and hence 

ata = btb 

consequently, using equation (IO) 

st = s-' (-44) 

and the Wronskiun divergence theorem is seen to imply the unitarity of the 8-matrix. This 
is not surprising as both conditions represent flux conservation. 

A version of the optical theorem also follows immediately from the unitarity of the 
S-matrix. 

Tr Im (t) = -itTr[t - t') = -iqTr{t't). (As) 

This version of the optical theorem relates to the trace of the t-matrix rather than individual 
angular-momentum channels because of the inter-channel scattering introduced by an 
anisotropic potential. Of course in the basis that diagonalizes t. all the standard results 
of isotropic scattering theory can be recovered. 

Appendix B. The Friedel sum 

It is of interest to derive, in the present more general context, the well known Friedel 
sum [341. An earlier non-relativistic treatment of the anisotropic case is to be found in [6]. 
Clearly, the density of states of a system is given by 

Defining 

equation (Bl) becomes 

n(&) =Tr[bF-lbt]-l. (B3) 

The essence of Friedel's famous result is a strikingly simple expression for Fp,.p in terms 
of the scattering phase shifts @ ! ( E ) )  describing a spherically symmetric, non-relativistic 
scatterer. In what follows, we extend this result to an aspherical relativistic scattering 
centre. To begin with, we note that Fp.0 can be re-expressed in terms of the Wronskian 
of one radial solution with the energy derivative of the other. 

We follow Friedel's argument and define 4 and 4 by the relations H . D ~  = &q 
and H D ~  = E*$, where HD is the Dirac Hamiltonian for some real potential. Then, 
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by differentiating the first of these expressions with respect to the eigenvalue of 4, and 
-+ . . premultiplying by c$ , it IS easy to show that 

moreover 

and subtracting 

Substituting this into equation (AI) 

Substituting this into equation (B2). and using Green's theorem 

For large p and in the absence of a potential, it can be shown that 

Now, we consider the change in n(s) due to the scattering potential V as p+ 00 

h ( s ;  [VI) = n(&; [VI) - n(s; [Ol). 

After further algebra, we find that 

&I(&; [ V I )  = h c  lim WO Tr 
R-rm 

Surprisingly, this formula can be further simplified as follows 

where N(s) is the integrated density of states, /" Gn(&')ds'. This is Friedel's original result, 
except that the generalized phase shifts, which are equal to half the eigenphases of the 
s-matrix, are involved. 
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