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Abstract. Relativistic potential scattering from non-spherically symmetric scatterers is studied
and expressions for both charge and magnetization density are derived. The validity of fuil-
potential  Korringer-Kohn-Rostoker (KKR) multiple-scattering theory for full potentials is
asserted and a practical scheme for calculating the single-site t-matrix for the space-filling
Wigner—Seitz cell is then described. Results, including fuli-potential band-structure calculations
for silicon with an Lpm,, of two, three and four, are then presented.

1. Introduction

Generally, the application of multiple-scattering theory [1] for describing electrons in
condensed-matter systems involves representing each scattering site {i.e. atom or ion) as
a potential well that is both isotropic and of finite range. This is called the muffin-
tin approximation, after the sphere delimiting the potential well. More recent work has
tended to relax this restriction [2-7], and the problem of treating unrestricted space-filling
potentials has been addressed repeatedly [8-12]. In this paper we develop an efficient
computational technique for studying relativistic potential scattering from non-spherically
symmetric scatterers. Although our discussion will at first be quite general, we shall have
in mind applications in the calculation of the electronic structure of solids, and in the latter
part of the paper we illustrate our method using crystalline silicon and ferromagnetic iron
as explicit examples.

There are a number of physical effects where potential anisotropy can be expected to
play a significant role. These include the magneto-crystalline anisotropy of transition metals
such as iron and nickel, covalent bonding, surface effects in metals and the unexplained
degrees of freedom observed in heavy-fermion systems. In such cases, it is important to
treat spin polarization together with orbit—orbit and spin—orbit coupling on equal footings.
Experience suggests that perturbation methods cannot be trusted in these circumnstances [13],
and hence the exact scattering-theory methods described below can be expected to have a
wide field of useful applications.

Following Strange et af [2], the applicability of relativistic density functional theory [14]
is assumed, and the influence of the effective magnetic field on the orbital motion of the
electrons (diamagnetism) is ignored. The former assumption allows all many-body effects
to be packaged as effective exchange~correlation potentials. The latter restricts the magnetic
vector potential so that it gives rise to a ‘spin-only’ effective B-field. This procedure is
known as the Gordon decomposition [15, 16].
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In section 2, starting from first principles, we formulate the single-site scattering problem
and solve it directly for a spherically confined but anisotropic {(warped muffin-tin) potential.
In section 3 we review how the t-matrix can be obtained, and continue by discussing angular-
momentum truncation in section 4. We generalize our technique, as required for a space-
filling potential defined within a Wigner—Seitz cell, and discuss the angular-momentum
convergence of our Y-matrix calculation scheme in section 5. In section 6 we show how the
charge and magnetjzation densities can be calculated in our approach. Finally, we present
results for iron and silicon in section 7 and summarize our conclusions in section 8.

The following notation has been adopted in what follows, Dirac four-component spinors
are given a tilde, e.g. w,b Two-component spinors are given a bar, e.g. ¢. Three-component
real-space vectors are printed in bold italics, and unit vectors given a hat, e.g. W(#).
Matrices are underlined whenever their indices are suppressed e.g. A, 8.

2. The single-site scattering problem

Neglecting diamagnetism, the Kohn—Sham—Dirac equation of relativistic density functional
theory reduces to [2]

{—ifica - V + mecB + Uelr; (n. m)] + Bo - Weglr; (n, m)] — e} (r) = 0 (1)

where ¢ and 3 are the standard four by four Dirac matrices [16], and 1,5(1') is a four-
component Dirac spinor wavefunction.

In the case of application to solids, U.y and Weg are periodic crystal potentials,
composed of individual potential weils, namely U = Ez U{r — B) and W =
¥ W(r— R).

As a preliminary to solving equation (1), we shall study the Dirac equation

{ca-p+mcc2ﬁ+ Uir)+ Ba - Wir) -—8}’1/;(7') =0 (2)
for a U and W describing a single scattering: centre.

As is well known [16), &« p = —iF » a[h{8/8r) + (1/r)(h — Bk)], and equation (2)
can be written in the following convenient form:

{mec’B + V(r) — ke a[(1/r)(h — BK) +R@/IN}DE) = eg(r) (3)
where k = B(o-L +h).
The principal virtue of this version of the Dirac equation is that it makes the introduction

of the radial wavefunctions particularly straightforward. In short, we proceed by expanding
P(r) in spin-angular harmonics, by writing

K. =172 »
P(r) = Z[ _x“‘(r.) J ""‘(r)] where x, (F) = [Cicm’]m;”zﬁm Yeu+1 ;z(t)]
e | Xy T} Buen(r) ' st Yoo 5
is a Pauli column spinor eigenfunction of the total angular-momentum  operator,
= |L+ S}?, and also its z component, Jz = Lz + 8z.
H V() is isotropic, equation (3) only relates the large compor:ent Fienn (), to itself (via
mec* B + V(7)) and to the small component g . (r) (via the term in -+ o), and so the Dirac
equation can be separated into an infinite set of pairs of first-order differential equations. If

V(7) is not isotropic, it introduces couplings between the angular-momentum channels as
follows:

. d I -
Z[ [lﬁt‘ﬂ'y (a; + ;"‘ + ;0’;) - meczcrz + 8]8;:!_,:3“:# - Vx_u;x".w(r)}ﬂw’.u‘('l") =
Kt .

()
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where ﬁw = gx',wg; } is a two component radial wavefunction, and
K
X S FV ()X e AP 0 22
Vet () = g - "
4 0 X e lFY ()Xo (AP
f [X,I,M('F)W(r) " Xy (F) 0 ] 2
+ -f  a _ A
A 0 X LPYW(r) OX . ;AT
It U(r) and W (r) are spherically symmetric and W {r) is unidirectionai, the V-matrix
simplifies so that only those pairs of channels with identical u and / values (k = —(x" + 1)

or ¥ = k') are coupled. However, if either I/ or W is anisotropic, V becomes more
complicated.
To be more specific about V, we expand U and W in spherical harmonics:

Ulry =y UM () ¥}'(7)
LM

(5)
W)=Y W () Y)M(#)
LM
and find that
—_— LM (K'l’ ﬂ1|Ygf1'fz‘ Mz} O
Virausia s (1) = ; usrin [ 0 (—pcl y 1] |Y£'f| — Ko, “2)
Y |2, pa) 0
wisgy. [l G
+ LZM: r) 0 (_Kh.“!IGYEJi — K, P’Z) ( )
where

fers il Jea, )
. "k =1/2 5 Moeayvyia=1/2, a0 12~
= Cg:.:f:—i/z;1/2.+l/2C::.:::—1/2:1/2.+1/2j; [Yt‘:' ("')])*YL ("")Ye; (F) d°7
714

TR . P12, a TR M o 1 2y a3
+ Cienipzap-12C a1 12112 ﬂ (Y4 @]y (PYY TR FF
T

are Gaunt Numbers for half-integral angular momenta.

The corresponding terms in the second sum of equation (6) are spin-orientation vectors,
and are dotted into the WM, as indicated. Their x and y components can be obtained in
terms of Gaunt numbers after expressing o, and oy in terms of spin-raising and -lowering
operators:

(61, 117 oclien, o) = & s, sl Y2 Yz, 2 + 1) [j2(a + 1) ~ paataza — 1))
+ 3l Y e 2 = 1) [2G2 + 1) = oz + 1))
v, [ aylica, o} = (i/2) {kvs sl LY oy 2 + 1) [12Ga + 1) = oz — 1]

= @/2) {er, 1| Y ez, 2 = 1) [jaGia + 1) = patg + D]
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The z components can be obtained more directly:
M - .
("“* Y[ oy, “2) = C::.ﬂ:—1]2;]}‘2.+1}2C::,ﬁ:—1]2:1/2.-Hi2
x f (v @) v ¥ dre P e
4x

LeNy-1| KT A2
= Colmrtyzj2-12C 121722172

% f [y m) e Gt e
4x

The symmetry properties of these kinematic matrix elements are such that V is Hermitian,
even when U and W are not isotropic.

For practical calculations, the infinite set of coupled equations is simplified by
approximating them with a sub-set defined by an (arbitrary) maximum angular momentum,
Loax- The truncated coupling matrix (and hence the Hamiltonian) remains Hermitian,
because the cut-off is symmetric in eigenstate labels. That Vi, ,,,.«, ., may be truncated in
this way is justified in section 4 below.

3. Finding the ‘on-the-energy-shell* -matrix

For many purposes, the scattering problem is solved once the ‘on-the-energy-shell’ t-matrix
has been obtained. This can be done as follows [17]. First, a basis {&Q} is sought that
spans all solutions of the scattering Hamiltonian that are regular at the origin. This basis
need not be orthonommal. The angular-momentum representation of the $-matrix can then
be obtained by identifying every linear combination of these {‘ig} for which incoming flux
is present in one spin-angular symmetry channel only.

If near to the origin the scattering potential depends only on |7}, a suitable set of regular
functions can be defined by stipulating that each has a particular and unique spin-angular
symmetry at the origin, Q — (x, p). Each basis function ®»(r) can then be constructed by
outwards integration of (4) from the boundary condition asserted for it at the origin [18,2].
As usual, the r — oo asymptotic form of these functions can be expressed in terms of
four-component spinor Hankel functions, 23, where A from now on always stands for
asympiotic angular-momentum labels (x, ).

Technicaily, we define

1/2 /2 ~ - ke
ﬁf_g(f} g) = (;qz"_z) [ (5 T mec )2 2 _XK.M(TE hi(qr)] 7
4xhic iSc{e —me?) " X_, () K3 (gr)
where the energy £ and radial momentum fig are, of course, related by
{hcq)2 =g - (m.,cz)2
and we have adopted Dirac normalization such that
f["*( 'e)]f'*(r's’)dE‘ LI hapeT "] dr
AT a f i r= g m |, P rig—q)l
dq
= — 3 Y = e
= 04 —q) (e — &)

where ja = 1/2(h} + hy).
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We now seek ‘f’Q(r; £) in the form

- con | X P felri e, Z)
lim P (m ) = [x_,,i(ﬂ g, (7 £, Z)}

where f, and g, are radial functions specified close to the origin in terms of the series
solution of the hydrogenic Dirac Hamiltonian [19]. This is preferred to the value given
in [18], as it avoids the requirement associated with that value and positive « for a radial
grid extending in excessively close to the origin. '

In the opposite (r — o0) limit, ®¢ contains radial components in many other angular-
momentum channels. In fact it can be written as

lim $g(r) = XAjﬁ,t(r} 8ro + Ay (1) bsg. @)
Multiplying @Q, on the right by ba A, and summing over A’, we define a new function,
X
Zalr) =) By(r)by),. 9)
¢

It follows from (8) and (9) that, asymptotically, ¥ consists of a single incoming spherical
wave and a sum of outgoing waves

lm (%a(r)) = Ei(r)+ ) Bh@) Y Ay gbgia.
A g

The {xx} are the spherical-wave analogues of the familiar plane-wave scattering solutions,
and form a complete set. Consequently, the angular-momentum representation of the
s-matrix, which is defined by the asymptotic relation

Xalr)=hy () + Zﬁ}t(’-")sn'.z\
A’

is given by
s=ab™" (10)

Furthermore, the ‘on-the-energy-shell’ components of the 1-matrix we require [20] are
defined by the relation

= 21!? tKI.»LlIJf!nﬂl = Sifl ke T 6"1-"'23#&-#2' (1 l)

We now tun to the calculation of the a and b matrices. Evidently, they are the expansion
coefficients of the ®y in the «, 1 basis beyond the range of the potential, and are defined
by equation {8). They can be written as integrals of the Wronskians of the value of &

and free-space solutions ﬁj{: taken over any surface I" enclosing the region where V(r) is
non-zero, namely

ayg=-Wr [EI; ‘5Q] / Wo ,
(12)
ba.o = +Wr [E;; &»Q] / Wo
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where the relativistic Wronskians Wr[2Z; 'J;] and Wy are defined by the following relations
Wi [f2 e 6] =1 [ 157 0]' 0 - air

i
T 2mhe’

Wolr; &) = ir? f [irm)]) akpr)dd = (13)
4

in the warped muffin-tin case, the natural surface over which to conduct the Wronskian
integral is the muffin-tin sphere itself. This has two distinct advantages. First, there is
then no need to continue the radial integrals across the potential step that generally occurs
at the muffin-tin radius; and second, the surface integrals become trivial because of the
orthonormality of the spin-angular harmonics on such surfaces.

ir? f REry @ ®o(r) - 4% = T, (1) B pu(r) — Py (r) &, (7)
dr

where

- % (F) @ ()
&,0r) = [ At L il ] .
(=2 | 2 B gl

In short, we find that
aro(R, &) = +iR[wq (e + mec?)]'/2{h; @RYB 4 ga(Rs &)

~ [reqSe/(s + mec?) k7 (qRYE A 011 (R s)}

] (14)
Ba.g(R, &) = —iR[rq{e + mecz)]’/2{h:(qR)<1>A,Q;2(R; £)

- [hch,/(s + mecz)]h'ti'(q RY& A 0.1 (R: a)}.

The eigenvectors (and associated eigenphases) of the $-matrix can be labelled by their
limiting spin-angular character at zero energy

8(2) u, () = exp[2is, (&) Ju. (&)
ul(8) = (U}, 1 (€)1 Wby )y <o il (B +0)

where the asymptotic form of the corresponding eigenfunction of the Hamiltonian is

_ Xy AF) Jelqr +8,)
Wy(e) = "Zp: Hose, (€) [ii_:ﬂ(’q) Jilgr + 3”)] .

In the £ — 0 [imit, the eigenvector u, {0} has only one non-zero component, namely

Li_fg Wik (&) = 8 u. (13)

Hence it is possible to identify v with (x, i) and to speak of (for example) an S-like phase
shift, meaning minus half of that eigenphase of the S-matrix associated with the eigenvector
of the S-matrix that evolved from the zero-kinetic-energy eigenvector that represented a
pure S wave.
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4. Angular-momentum truncation

It is inevitable that above some angular-momentum Ly, the S-matrix reduces to the
identity. It is less obvious that the coupled equations and the @ and b matrices can be
similarly truncated. We now turn to these related questions.

As regards the coupled equations, there is 4 marked tendency for low angular-momentum
radial components to induce very large responses in those high angular-momentum channels
to which they are coupled. This ‘enhanced up scattering’ can be understood mathematically
in terms of the power-law behaviour of spherical Bessel functions close to the origin, and
also physically as representing the formation of those sharply defined incident wave-fronts
that pierce the anisotropic potential on precisely those trajectories that avoid picking up
much angular-momentum from the potential.

The above observations might be taken to suggest that truncation of the t-matrix at Lmax
is misguided, as it involves ignoring high angular-momentum components of considerable
magnitude. Fortunately, the secondary effect on the low-angular-momentum channels of
the large amplitudes in the high angular-momentum channels is negligible, because down
scattering is suppressed to a much greater degree than up scattering is enhanced. Hence, if
it can be shown that only the radial functions in the low angular-momentum channels play
a significant part in determining the S-matrix, then L,,, truncation has been justified.

To be more specific, numerical experience (once more consistent with the power-law
behaviour of the j; and n; functions close to the origin), implies that @ and b have the
following approximate structures

A 0O B O
=[S« e-134
and hence

-1 __ B-! 0
b "[—K-’Js—l K- |-

Consequently,

AB-! 0
S= [ 0 1 ] .
Evidently, if the a and b matrices had exactly the form shown, the low angular-momentum
sector of S would be given exactly by A B~!. In reality, the upper right-hand sub matrices
{shown above as identically zerc)} contain smail non-zero entries, §2, and Q,, and the J
and K which are shown as common to the @ and b matrices differ slightly between them.
To first order in all deviations from the ideal forms of a and b, the low angular-momentum
sector 8, of the S-matrix, is given by

S, = AB~! +[AB-'Q, — ,]K-'JB-,

J: —Jy and K; — K, only enter into the expansion of S, via second-order and higher
terms. It is apparent that the error intraduced into 8;__ by truncating the & and b matrices
to A and B (and so discarding all terms after AB~') is small, being first order in the Q
matrices. This establishes the legitimacy of Lp,: truncation both of the potential expansion
in equation (5) and of the & and b matrices.
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5. Space-filling potentials

The question of the applicability of multiple-scattering theory to space-filling potentials is
contested in the literature. In particular, whether ‘near-field corrections” have to be made
has been much discussed [21, 22, 8).

We agree with Butler ef o/ [11] that the formalism of multiple-scattering theory holds
for space-filling potentials as long as the S-matrices involved are evaluated on the surface of
the Wigner—Seitz cells. Moreover, we accept Nesbet's argument [9] that for the full-potential
problem, the local cell potential can be arbitrarily continued into the moon regions [8]
between the surface of the Wigner—Seitz cell, I'ys, and its circumsphere in order to simplify
the calculation of its S-matxix, and that the basis functions so generated are independent of
the potential in the moon regions.

Once the t-matrix ty- 4 (£) has been calculated, we proceed to finding the energy bands
by looking for the zeroes of the generalized KKR determinant. Namely, for each wave vector
k, we find the energies &, ,, such that

') —ig —B(k; )|l = 0

where By 5 (k; €} are the relativistic structure constants [23,20,2].

Figure 1. Analyticaly continued silicon potential extending throughout the Wigner—Seitz
circumsphere,

The two obvious candidates for ‘moon-region” potential are (i) that which continues
the interior scattering potential smoothly, so that the simplest possible representation of the
Hamiltonian within the Wigner—Seitz circumsphere can be used [12], see figure 1 or (ii)
zerp [24], so that S can be evaluated on the Wigner—Seitz circumsphere, see figure 2. We
next argue that there is no advantage (o be gained from requiring the potential within the
Wigner—Seitz circumsphere to be smooth. By contrast, the practical advantage of evaluating
& on the Wigner—Seitz circumsphere, which can only be done if the potential in the moon
regions is set to zero, is obvious.

Because the choice of Wigner—Seitz cell potential we favour is discontinuous on ws,
it cannot be accurately represented without the use of high-order spherical harmonics.
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Figure 2. Abruptly truncated silicon potential, limited to within the Wigner-Seitz cell.

Fortunately, such high-order harmonics do not enter into the truncated set of radial equations.
The couplings they give rise to all involve high angular-momentum channels (because of the
triangle rule). So far as it is legitimate to neglect such high angular-momentum channels,
to that same extent the high-order components of the potential can be neglected. Moreover,
the Ly, defining the set of radial equations fixes the point at which the potential expansion
can be truncated, namely %Lmu. It follows that a space-filling potential can be adequately
expressed throughout each Wigner—Seitz cell in terms of a very limited number of spherical
harmonics. In all our calculations, we have found s (and so t} by integrating (4), and
evaluating the a and b matrices using (14), at the radius of the Wigner-Seitz circumsphere,

6. Charge and magnetization densities

While the ‘on-the-energy-shell’ t-matrix for every unit cell is sufficient to determine the
energy eigenvalues of an infinite solid, in a self-consistent calculation the charge and
magnetization densities are required as well. In this section we discuss the formulae for
these quantities appropriate to the anisotropic scatterers considered here. Recall that the
charge and magnetization densities may be calculated using the following formal relations:
q(rie) =e(r|é(e—H)|r)
(16)
™7, €) = ppor (P GO 8(z —H) 7).

Resolving the identity to the right of the delta function in the first of equation (16) using
the spherical scattering solutions [25] gives:

o
qirie)=ey X\ £)8( — EYX (i E)=e) f Xh(; E)S(e — E)X,(r; E) 4E.
E.A A

(an
We now recast the above relation intc a2 form more suitable for numerical cal-
cutations.  Changing the variable of integration, and using the relativistic relation
E(p) = c(p* +mzcz)l /2, we find that
7 172
girie)=e Z[XR (73 PYRATS p)] (18)
A

p=liefo)?—(mee)?]

=ey $prm e om bl @bE)],, (19)
0.0
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and similarly
mir; €) = oot 3 Dy(ri £)8 0@ o(r; )b E)b(E)] 5 o (20)
5o

These relations take a more familiar form when expressed in terms of the Z functions [26, 20]

Za(r) = (k2 (2g8) PR 5L @n

o 2rhier\ . IR
mzn(f’)-‘:( P ) (4"A+;KA".AJA')-

Substituting equation (21) into equation (18), we find that

glrie) = —-eﬁi—zu—Im Zz (&2 p(r;8) t prale)

m(r; £) = —~Meohr n‘? 2 m sz(r £) Bo Z p(ri ) t pale)

where we have used the identities
" = (i/29)t - 1
Tt — thZt 2} =2t Z 1) - [ZTZ 4] =2ImTe{ZT Z 1},

Note that when atomic units are used, lHmg o (26/5%c2) = 1,
These results can be generalized to the multiple-scattering case either by constructing
the system’s Green function from the scattering solutions or more directly from the secular

equation of muitiple-scattering theory {10,27]. The required generalizations of the standard
formulae [20] are

. 2e 1 i
gir &) = e 5 Im ZAZAT(r &ZL.(r 8) il \(&)

, 2e
™ (i 8) = ~itpoher —Im Zz:(‘(r £)BoZl.ir; £)Tii A ()

where
= - Q'tf [tq San — iy + BY L (K, e)] exp[—ik - (R — R;)] &%k (22)

the superscripts label Wigner—Seitz cells, and the Bf{ Ak, &) are the usual relativistic
structure constants for the lattice. Because the basis functions within the Wigner-Seitz
cell are independent of the potential in the moon regions, the basis functions used in the
above formulae can be identical to those used to calculate the t-matrix.
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7. Results of implementing the full potential KKR theory

In order to illustrate the power of the above theory, we shall now report on a number of
calculations for iron and silicon. In the first case we shall focus on the interaction between
the local magnetic moment and the cubic crystal field. In the second case, we shall aim
to demonstrate that our full-potential KKR theory can describe the highly directional sp>
bonds in silicon with a relatively low value for L.

Unless stated otherwise, the results quoted below were obtained with Lpy = 2.
Relativistic units are used throughout, with the physical value of the speed of light ¢
being unity. The aspherical electric scalar potential was in each case determined by a
self-consistent linearized augmented plane wave (LAPW) calculation, using a code [28]
generalized to cope with systems lacking inversion symmetry As is well known, for
iron the etectric potential has (cubic) components in ¥ and Y, HO. and Y6 and Y‘“C’ while
for silicon, there is an additional (tetrahedral) component in ¥; ‘S’ [29]. The spin-dependent
potential used to obtain the results quoted for iron was taken from the literature {30). We
begin by displaying the effects of non-sphericity in the case of a single scatterer.

Oy

( ‘a@

Figure 3. Log of charge desity on the [110] plane  Figure 4. sioh™' My on the [110] plane for
for the warped muffin-tin iron potential, with its / =4  the warped muffin-tin iron potential, with its [ =
component boosted tenfold. The core region has been 4 component boosted tenfold, and the magnetization
removed. along {001).

7.1, D-wave phase shifts for iron

A charge density plot for a warped muffin-tin iron potential, with the local magnetization
aligned perpendicular to one face of the Wigner—Seitz cell, the (100} axis, is given in
figure 3. The / = 4 component of the electric scalar potential is non-physical in that
it has been boosted tenfold to illustrate the effect of asphericity. The peripheral charge
distribution, though non-spherical, is smooth and has no lobes, indicating the absence of
covalent bonding,. It is slightly stretched out along the plot’s y axis because the neighbouring
atoms on this plane are further away from the central atom in this direction than the other.
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The influence of the anisotropic scalar potential can be seen in figure 4, where the component
of the magnetization density perpendicular to the imposed W direction is shown. The
inverse hyperbolic sine of the magnetization is plotted to compress the large range of the
plot. A substantial orthogonal magnetization can be seen in the core region.
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Figuve 5. D-wave resonances for the warped muffin-tin iron potential.
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Figure 6. D-wave resonances versus 1/c2, for the warped muffin-tin iron potential. ¢ = 1
corresponds to physical reality.

The D-like phase shifts (see discussion at equation (15)) for the above potential are
given in figure 5. To illustrate the effects of relativity, the D-like resonance energies for
the same potential are plotted against 1/¢2 in figure 6. It is not easy to make sense of
these data, as the effects of the anisotropic scalar potential and the spin-polarization W - S,
and relativistic L - § interactions are of similar magnitude. To clarify the situation, it is
helpful to consider in tum first the three extreme cases where only one of these interactions
is significant and then how these merge into each other. This can best be done by focusing
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Figure 7. Iron D-wave resonances, non-relativistic case.
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Figure 8. Iron D-wave resonances, non-magnetic case. ¢ = I corresponds to physical reality.

on the segregation pattern of the D-like resonances as a function of the three interaction
strengths.

Figure 7 relates to the non-relativistic case. On the left, the spin-polarization potential
has its nominal value, and the anisotropic past of the electric scalar potential varies from
zero to ten times nominal. On the right, the scalar potential is maintained at ten times its
nominal value and the magnetization is reduced from its true value down o zero. The change
over from the spin-up/spin-down pentuplets to the doubly degenerate cubic triplet I} and
doublet I'y, is clear. In the non-relativistic regime these iwo interactions are additive, spin
being independent of orbital motion.

Figure 8 relates to the non-magnetic case. On the left, relativistic effects are maximized,
with the speed of light set at (1.5, and the anisotropic electric potential varies from zero to
ten times nominal, On the right the cubic anisotropy of the eleciric potential is maintained at
its maximum value, and the speed of light is increased from 0.5 up to co. The change over
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from the relativistic pattem of a J = % quartet and J = % hextuplet to the non-relativistic
cubic degeneracies is clear. It is interesting to note that while the four resonances which on
the right belong to the Ty, irrep remain degenerate throughout, the six I35 resonances split,
one pair moving over to join with what was the T';, group, and so constituting the J = %

hextuplet on the left of the figure.

0,70 k b
o \§

G0

0.50

Magnetic Relativistic |

Resonance Energy (Rydbergs)

Bz=1, 1je2=0.4
1fe2=4, Bz=1.0

Figure 9. Iron D-wave resonances, isotropic electric potential case. ¢ = 1 corresponds to
phiysical reality,

Figure 9 relates to the isotropic scalar potential case [2]. On the left, the magnetization
has its nominal value, and the speed of light varies from infinity down to half its true value.
On the right, the speed of light is maintained at 0.5, and the magnetization is reduced from
its nominal value down to zero. The change over from spin-up/spin-down splitting to the
relativistic pattern of degeneracies is clear. The conflict between the propensity of the spin
of each electron to align on the one hand with the imposed magnetization, and on the other
with its own orbital motion is apparent.

7.2, Single-site magneto-crystalline anisotropy for iron

To gain further insight into the coupling of the local magnetic moment to the crystal field,
we have studied the magneto-crystalline anisotropy of a single iron potential well. We
found the Fermi level and electronic internal energy Uz of the single-site system with the
magnetization oriented in the {001], [110] and [111] directions by using the Friedel sum, as
derived in appendix B, for the spin-dependent density of states. In the non-relativistic limit, a
magnetic field only interacts with the electron spins, which are themselves entirely decoupled
from the crystal field. The magneto-crystalline anisotropy is in this limit identically zero,
and the effect revealed as essentially relativistic.

In figure 10 Ug[001] — Ug[111] and Ug[001] — Ug[110] are plotted against 1/c?, for
a warped muffin-tin iron potential. Ug[00F] — Ug[111] starts slightly positive, becomes
negative (faliing to a minimum for ¢ = 0.45) and then rises steeply for lower values. Taking
these caiculations at face value, at intermediate values of ¢, the [001] magnetization results
in the lowest internal energy, and the [111] the highest; so the easy axis might be expected to
lie along {100]. On the other hand, in both the extreme relativistic and non-relativistic limits,
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Figure 10. Single-site component of the magneto-crystaliine anisotropy for the warped muffin-
tin iron potential. ¢ = 1 corresponds to physical reality.

the [111] orientation is the least energetic and the [100] orientation the most energetic, and
the easy axis should then lie along [111]. However, for ¢ == 1, the single-site contribution to
the anisotropy energy is truly negligible [31]. Evidently, such calculations would be more
interesting if carried out for bulk materials. Moreover, realistic quantitative calculations
certainly require the development of a fully seif-consistent procedure.

7.3. Magnetic anisotropies in the band structure of iron

The Lyex = 2 spin-polarized band structure for the warped muffin-tin iron potential in the
region of £¢ and along the lines K (1/2 ,1/2,0) —F and ' L (1/2, 1/2, 1/2) is given in
figure 11. Bands are given for the magnetization directed both along the [001] and {111}
directions. In this region of the Brillouin zone the D-wave bands are very complicated,
being first split by the large exchange splitting W - 5 term and then distorted by the mutual
repulsion of those bands belonging to the same irreps of the space group that are brought
into proximity by the W - § shifts. The set of bands featured in figure 11 have almost
pure spin character, but some J-character is retained, and this is the cause of the splittings
evident where they cross the ' point. The impact of the cubic space group is clearly seen in
the approximate triplet/doublet segregation of these five bands, the lifting of this degeneracy
at the milliRydberg level is due to angular-momentum orientation. Because it changes the
space group, rotating the magnetization alters which bands can cross each other (see for
example the behaviour at 0.662 Ryd and 0.626 Ryd, half-way between K and I™) as well as
more generally changing the magnitude of the band repulsions.

A comparison of the upper (triplet) set of bands at the I" point for the isotropic muffin-
tin and warped muffin-tin cases is given in figure 12, While the anisotropy of the cell
potential is seen to shift the bands bodily by about 2 mRyd, it does not significantly change
the difference in band energies for the two orientations of magnetization. This is not
surprising, because as has already been remarked, the latter effect is largely attributable to
W - J. It might appear, therefore, that the use of a warped muffin-tin cell potential in a
calculation of the magneto-crystalline anisotropy of iron would give essentially the same
result as would be obtained with an isotropic muffin-tin cell potential. However, because
the true magneto crystalline anisotropy is in the region of only 20 #Ryd, it is still not clear
that the cell potential anisotropy has a negligibie role in determining its exact value [31],
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Figure I1. Ly = 2 D-wave bands for the warped muffin-tin iron potential. The full curves
are for the magnetization along [111] and the broken curves for the magnetization along [001].
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Figure [2. Lps =2 D-wave bands for the warped muffin-tin iron potential in the region of
the I" point {curves), compared to the isotropic case (points).

7.4. The band structure of silicon

Silicon has one of the most open lattices encountered in solid-state theory, The radius of
its Wigner—Seitz circumsphere is in fact equal to its nearest-neighbour separation. It has
long been thought impractical to apply multiple-scattering techniques in such circumstances
without the use of auxiliary empty spheres [32]. Our results show this judgement to have
been unduly pessimistic.

In principle, our calculations should agree with the results obtained with the self-
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consistent LAPW code, because the potential used is identical. Exact agreement was not

expected because the LAPW uses a linear approximation technique and becomes less accurate
at higher energies.
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Fignre t3, Phase shifts for the warped muffin-tin silicon potential, (with its / = 4 past boosted
tenfold). Results for the isotropic case are given as broken curves, for comparison.

The unit cell of the silicon lattice contains two atoms. The §-matrix of the second can
be obtained from that of the first by either reflecting it in the xy plane or rotating it about
the z axis by one quarter revolution. The S-, P- and D-like phase shifts for a warped
muffin-tin silicon potential are given in figure 13. To illustrate the effect of asphericity, the
! = 4 component of the anisotropy has been increased tenfold. The j = -32- and j = 1/2
P-wave splitting can hardly be seen, because relativistic effects are so small. The phase
shifts are seen to deviate significantly from those of the isotropic case only where two waves
belonging to the same irreducible representation of the symmetry group characteristic of the
scattering potential have similar phase shifis; and in particular when these would be identical
in the absence of the anisotropy. In the energy range of interest, this condition is only met
for the P and D-waves, and then only substantially above ¢r. Even so, for energies in the
region of ¢ (and hence the band gap), the P- and D-like partial waves are of somewhat
mixed character. This shows up clearly in the charge density, figure 14, calculated using
(19) and (20). The regions of increased electron density are remnants of the covalent bond
charge that build up between nearest neighbours in crystalline silicon,

The s-matrix of a space-filling potential (figures 15 and 16) was evaluated on the
Wigner-Seitz circumsphere as described in section 5, above. The generalized phase shifts
for Lmax = 2 are given as figure 17. The phase shifts for the isotropic muffin-tin potential
are plotted as broken curves on the same graph for comparison. Although no anisotropic
components have been boosted, the D-like phase shifis show significant cubic splitting.
This is due to the potential in the interstitial regions within silicon’s open lattice, which
plays a critical role in defining the element’s band structure. The second (and dominant)
effect, however, is the peaking of the P-wave resonance and the reduction of its energy
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Figure 14. Log of charge density on the [110] plane  Figure 15. The space-filling silicon potential on

for the warped muffin-tin silicon potential, with its  the [110] plane, constructed within each Wigner—Seitz

{ = 4 part boosted tenfold. The core region has been  ceil from an isotropic component together with others

removed. proportional to Y29, ¥9, ¥, ¥ and ¥{'©. The
core region has been removed.
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Figure 16. V3, ¥4 and Vs anisotropic potential components for the space-filling silicon potential.
Values for the analytically continued potential which gives the best fit within T'ws are given
as curves. Values representing the potential when zbruptly truncated at T'ws, as used in our
calculations, ate given as poinis.

by about 0.2 Ryd. These effects are largely attributable to the additional isotropic potential
component now present between the muffin-tin and Wigner—Seitz circumsphere. The §-
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Figure I7. Phase shifts for the space-filling silicon potential, with Lmaxx = 2. Results for the
isotropic muffin-tin potential are shown as broken curves, for comparison.
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Figure 18, P-, D- and F-wave components of the P- and D-like elgenvectors of the s-matrix
for the space-filling silicon potential, with Lumax = 3.

and P-like phase shifts are not affected to first order by any tetrahedral or cubic aspherical

components, and for Ly = 2, the $-like phase-shift is unperturbed to all orders.
However, a first-order mixing of £ and D waves does occur for Ly, = 3 viathe [ =3

tetrahedral potential component, see figure 18, This plays a significant rol¢ in defining the
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band structure, though not the phase shifts. In particular, while the P-like phase shift is
affected only quadratically, the electronic bands depend linearly on this anisotropy. This
is because the tetrahedral concentration of bond charge is essentially built up by multiple
scattering from the lattice, and so is zeroth order in the atomic anisotropy. The latter is,
however, aligned with the anisotropy of the charge distribution and so shifts the bands in
first order. This effect is represented in the KKR formalism for the tetrahedral silicon lattice
by appropriate off-site diagonal terms in the structure constant matrix.
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Figure 19. kxR (Lga = 2) results (poinis) versus LAPW results {curves) for the space-filling
silicon potentiat.

Figure 19 shows the agreement of our full-potential KKR results for an L., of two
with our LAPW resulis for the same potential. The most notable effect is that an (indirect)
band gap has opened up. A second effect can be seen in the form of the conduction bands
between the I and X points. These are made up of a non-degenerate S-wave antibonding
band (marked X at [[", 0.58 Ryd]) and a triply degenerate P-wave antibonding band, which
away from I is split by the reduced symmetry of the space group into a doubly degenerate
band and a non-degenerate band. In both the muffin-tin cases, the S-wave band is slightly
lower in energy than the P-wave band at I', whereas in the space-filling case it lies at a
higher energy. This effect is to be seen in both the KKR and LAPW results.

Calculations with Lpa.> 2 were complicated by the fact that the higher-angular-
momentum eigenphases have a tendency to pass through zero. This causes the inverse t-
matrix 1o become singular, and led our KKR code to produce spurious bands. This difficuity
was overcome by accurately locating the poles of t~!, then eliminating the resulting k-
independent false bands [33] by discounting reversals of the polarity of KKR eigenvalues
occurring at these energies. For this scheme to work, it is crucial to employ an accurate
interpolation method when constructing t~! for energies other than those at which it is
calculated by coupled radial integration. We found that constructing the matrices from
linearly interpolated eigenvectors and eigenphases (both of which are very smooth functions
of energy) was satisfactory, as long as care was taken to preserve the Hermitian character
of 1.
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Figure 20. Phase shifts for the space-filling silicon potential, with Lmax = 3. Resulis for the
isotropic potential component alone are shown as broken curves, for comparison.
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Figure 21. KR (Lpe = 3) results (points) versus LaPw results (curves) for the space-filling
siticon potential.

Increasing Ly to three changed the phase shifts only slightly (figure 20), and improved
the band structure results at higher energies (figure 21) but introduced no new features. It
is inevitable that Ly = 3 will give anomalous results for the S-wave antibonding band
(again marked X). The wave function of any covalent antibonding band has a low amplitude
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Figure 22. KKR (Lpg. = 4) results (points) versus LAPw results (curves) for the space-filling
sificon potential.

in the bond-charge regions, where the V3 and V4 add, but a high amplitude in the interstitial
regions, where the V3 and V; tend to cancel. Now, V, only affects §-wave bands to first-
order when L. = 4, at which point it couples in G waves. Hence, limiting Lyax to
three means that of all the anisotropic potential components, only V3 has a first-order effect
on the energy of this band at the T point. The resulting neglect of Vy shifts the S-wave
antibonding band up in energy, because its wave function will be affected by the positive
lobes of the V4 (which lie in the interstitial regions) much more than by their negative
counterparts {which lie in the regions of bond charge). Increasing Ly to four (figure 22)
allows Vy to have a first-order effect on the S-wave antibonding band’s energy, and brings
it back to its position in the L, = 2 case where q/f anisotropic potentials are ignored as
far as this band is concemed.

8. Conclusions

We have developed an efficient method for calculating the fully relativistic spin-polarized
scatiering amplitudes for a non-spherically symmetric potential to be used in KKR band-
theory calculations. We have discussed Lg truncation of the Hamiltonian, and justified
our use of this approximate procedure. Moreover, we have arpued for the validity of
full-potential KKR theory, and that the t-matrix should be evaluated on the Wigner-Seitz
circumsphere for an approximate cell potential. We have illustrated our method with
relativistic calculations for iron, and with calculations for silicon that avoid using non-
atomic ‘empty spheres’ and require an Ly, of at most four. The excellent agreement
berween our LAPW and KKR L. = 4 results even at higher energies tends to legitimize
both calculation schemes.

It is most satisfactory that a substantially complete description of the dynamics of
electrons in such an open structure can now be given in terms of one atomic S-matrix
per site, and especially one with such a low angular-momentum cut-off, The absence of
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near-field corrections in this most difficult of cases constitutes a strong practical argument
against their existence in any circumstances whatever.

At all stages in our analysis, we have maintained the separation between the dynamics of
the atomic scattering problem and the geometric effects of the crystal lattice. We believe that
this approach facilitates physical insight into the electronic properties of whatever system
the method is applied to. In particular, we expect the illuminating role still played by the
single-site generalized phase shifts (now augmented by their corresponding eigenvectors)
will prove fruitful in future work.
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Appendix A. The Wronskian divergence theorem

Consider the divergence of the local contribution to the matrix element of ¢, the relativistic
flux-operator:

V- (#o) = fla- (Vo] + [#la- Vé] = (/) @Hod - [$Ho])  (AD)

for every point in space, where Hyp is the Dirac Hamiltonian for some real potential.
If 4p is an RHS eigenfunction of Hp with energy €, and ¢ an RHS eigenfunction of Hp,
but with energy £*, then the following identity holds:

[FHo 8] = [Hod] d=[e'6] & =261 = GHo.
Thus:
v. (q’STm/S) =0 (A2)

which constitutes the local version of the Wronskian divergence theorem. In conjurction
with Green'’s theorem this implies that any closed surface integral of ¢l is zero if these
functions are solutions of the wave equation with the same potential, and are regular within
the surface of integration. Moveover it imnplies that an integral over a general surface I' can
be distorted into an integral over a sphere, S, of radius p.

Wr [‘i’gﬁ ‘i’Qz] =ip? Z ﬁf\.g, (0)ayRa,0.(p)
=ip Z[RA 01 (PRa.:2(0) = By 9,2(0) Ra.g1 ()], (A3)

This means that a Wronskian taken between any two of the regular basis functions will be
zero, for all values of p, because of the boundary conditions satisfied by the values of ¥
at the origin, which trivially ensure that

lim Ws[&o,; #0.] = 0.
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Beyond Mg, the & 5 become sums of free-space solutions, and W&, ; ©¢,] can be written
in terms of the a and b matrices and Wy:

Z W [aj\'QlHXv + b‘:\‘Qiﬂil; aA.QgEI' + bA.Qzﬁ;'} = 0 V Ql! Ql
A

; (aj\-QlaA-Qz - br\.lel\.Qz) Wo =10

and hence
a'a =b'b
consequently, using equation (10)
sf =g (Ad)

and the Wronskian divergence theorem is seen to imply the unitarity of the $-matrix. This
is not surprising as both conditions represent flux conservation.

A version of the optical theorem also follows immediately from the unitarity of the
S-matrix.

Tr Im ft} = —ilTrit — t} = —igTr {t't}. (A5)

This version of the optical theorem relates to the trace of the t-matrix rather than individual
angular-momentum channels because of the inter-channel scattering introduced by an
anisotropic potential. Of course in the basis that diagonalizes t, all the standard results
of isotropic scattering theory can be recovered.

Appendix B. The Friedel sum

It is of interest to derive, in the present more general context, the well known Friedel
sum [34]. An earlier non-relativistic treatment of the anisotropic case is to be found in [6].
Clearly, the density of states of a system is given by

n(e) = | (r|s(s — H)|r) &r [b(e)'b(e)], «1: ()@ o(re)d®r.  (B)
Q o
o QJ

Defining

Foo= f & (r ) & ol 6) &r (B2)
equation (B1) becomes
n(e) =Tr[bF' b}, (B3)

The essence of Friedel’s famous result is a strikingly simple expression for F g g in terms
of the scattering phase shifts {3,(¢)} describing a spherically symmetric, non-relativistic
scatterer. In what follows, we extend this result to an aspherical relativistic scattering
centre. To begin with, we note that Fy 5 can be re-expressed in terms of the Wronskian
of one radial solution with the energy derivative of the other.

We follow Friedel’s argument and define ¥ and @ by the relations Hpyp = e
and Hpg = g*¢, where Hp is the Dirac Hamiltonian for some real potential. Then,
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by differentiating the first of these expressions with respect to the eigenvalue of 1), and
premultiplying by ¢, it is easy to show that

. d - o/ d -\ -
M g —eat( & f
BHy 3= od! () + 39
Moreover
_d_“r) "_*("1i")*
(£9)#é=c (359
and subtracting
I g d . T
th— atHn S _ 1 S gt ,
39 = Mo 26— | (') o]
Substituting this into equation (A1)
At i")_ii

Substituting this into equation (B2), and using Green’s theorem

r=R

~ d - .
Fo.o(R) = —ihc [rz f @L(r)a —®,(r) - dzr]
L} d&‘ r=0
For large p and in the absence of a potential, it can be shown that

- d - 1 [p dg mect .
Ws|®p: —Bpl=— |2 2 |1 2 nl.
S[ 2 de Q] Fw[fr da][ +2€qpsm( qp“”]

Now, we consider the change in #(g) due to the scattering potential V as p— 0
dn(e; [V]) = n(e; [V]) — nie; [0D).
After further algebra, we find that

. — ; 1 4 __(_1_ -1
Sn(e; [V =he ;El-rgo Wa Trl(s daa dsb)b }

Surprisingly, this formula can be further simplified as follows

SNLEE S (RN G Y S
Sn(e) = 2Jr'rr[s des}_ o= Tr[dgln(s)}mxzdgéu(e)

v

1
NGIVD == - &)

where N (¢) is the integrated density of states, f ®5n(e’)de’. This is Friedel's original result,
except that the generalized phase shifts, which are equal to half the eigenphases of the
S-matrix, are involved.
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